

POLYNNES FROM *CALOTIS* SPECIES

C ZDERO, F BOHLMANN, R. M KING* and H ROBINSON*

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G., *Smithsonian Institution, Department of Botany, Washington, D.C. 20560, U.S.A.

(Received 17 August 1987)

Key Word Index—*Calotis dentex*, *C. erinacea*, *C. multicaulis*, Compositae, polyynes

Abstract—The aerial parts of *Calotis dentex* afforded two known C_{10} -acetylenic esters and a new compound, *Z*-dehydromatricarianol acetate, while those of *C. multicaulis* gave Centaur X_3 and two new esters, the angelate of *E*-dehydromatricarianol and the very unusual 5-acetoxy-8*Z*-deca-1,8-dien-3,6-diyne. The aerial parts of *C. erinacea* afforded, in addition to several known acetylenes, three new esters of dehydromatricarianol while the roots gave, in addition to matricariaester and dehydromatricariaester, two unusual C_{17} -ketones. The structures were elucidated by spectroscopic methods. The chemotaxonomy is discussed briefly.

INTRODUCTION

The Australian genus *Calotis* (tribe Astereae, subtribe Asterinae) has not been studied chemically. As the taxonomy of the whole tribe is problematic [1], we have continued our investigations of different genera which have not been studied previously. We now report on three *Calotis* species.

RESULTS AND DISCUSSION

The extract of the aerial parts of *C. dentex* R. Br. afforded *Z,Z*-matricarianol acetate [2], *E*-dehydromatricarianol acetate (**1**) [3] and the corresponding *Z*-isomer **2** which seems to be new. The structure clearly followed from the changed ^1H NMR signals (Table 1), especially those of H-2 and H-3 which both are shifted up field if compared with those of the *E*-isomer. The observed coupling $J_{2,3}$ clearly indicated the stereochemistry.

The extract of the aerial parts of *C. erinacea* Steetz afforded the C_{17} -acetylenes Centaur X_3 and X_4 [4], *Z,Z*- and *Z,E*-matricariaester, *E*- and *Z*-dehydromatricariaester and the dehydromatricarianol esters **1**, **4**, **5** and **6** [3]. The root extract gave *Z,Z*-matricariaester and *E*-dehydromatricariaester as well as the C_{17} -acetylenic ketones **9** and **11**.

The structures of **4** and **5** followed from the ^1H NMR spectra (Table 1) which were close to those of the known isovalerate **6** [3]. The nature of the ester groups clearly followed from the typical ^1H NMR signals.

The ^1H NMR spectrum of **9** (Table 2) showed the presence of a vinyl and a *Z*-propenyl endgroup. Furthermore, a pair of broadened triplets at δ 2.67 and 2.57 indicated the presence of methylene groups adjacent to a keto or an acetylenic group. All signals were assigned by spin decoupling. Starting with the vinylic protons the sequence H-1 through H-7 was established. As H-7 was a sharp triplet at δ 2.41, the presence of a keto group at C-8 was very likely. Starting with the signal of the olefinic methyl group the remaining sequence (H-9 through H-17) was determined, as H-10 showed a long range coupling with H-15. The presence of an enediyne-chromophore followed from the typical UV-maxima (λ_{max}

281, 264, 251, 240 nm). Thus the structure of **9**, which we have named calotinone, was established. The ^1H NMR data of **11** (Table 2) were close to those of **9**. However, the signals of the propenyl end group were replaced by a methyl singlet at δ 1.94 and the methylene triplets of H-9 and H-10 were slightly shifted. The presence of the corresponding triyne was established by the molecular formula and the corresponding fragments. Most likely the ketone **9** is biogenetically derived from **7** [5] which by allylic oxidation may be transformed to **8**. As in the case of the corresponding C_{14} -ketone named artemisia ketone [6], enzymatic hydrogenation would lead to **9** while oxidative degradation would give matricariaester. Similarly the corresponding triyne ketone would be the precursor of **11** and dehydromatricariaester. The hydrocarbons Centaur X_3 and X_4 are probably formed by elimination of water from the hydroxy derivative of **8** and the corresponding 15,16-dehydro derivative respectively.

The extract of the aerial parts of *C. multicaulis* (Turcz.) Druce also gave Centaur X_3 . Furthermore, the angelate **3** and the acetate **12** were obtained. The structure of **3** was deduced from its ^1H NMR spectrum (Table 1). The molecular formula of **12** was $C_{12}H_{12}O_2$. As the ^1H NMR spectrum (Table 1) and also the mass spectrum indicated the presence of an acetate group, this compound was the acetate of a C_{10} -alcohol isomeric with matricarianol. However, the ^1H NMR data showed that a very different system must be present though one of the end groups was a *Z*-propenyl group. The second end group obviously was a monosubstituted vinyl group. The observed splitting and the chemical shifts agreed nicely with those observed for compounds with a but-1-en-3-yne end group. Spin decoupling showed that irradiation of the low field broadened singlet at δ 6.33 collapsed the three-fold doublet of H-2 to a doublet and the H-8 signal to a doublet quartet. Thus all data agreed only with the structure **12**. So far no acetylenic compound of this type has been isolated. Its biogenesis is not easily explained. Perhaps the corresponding alcohol has been formed by allylic rearrangement of the corresponding deca-2,4,8-trien-6-yn-1-ol (**13**) followed by dehydrogenation of the 3,4-double bond. The acetate of **13** has been reported from a *Brachycome* species [7].

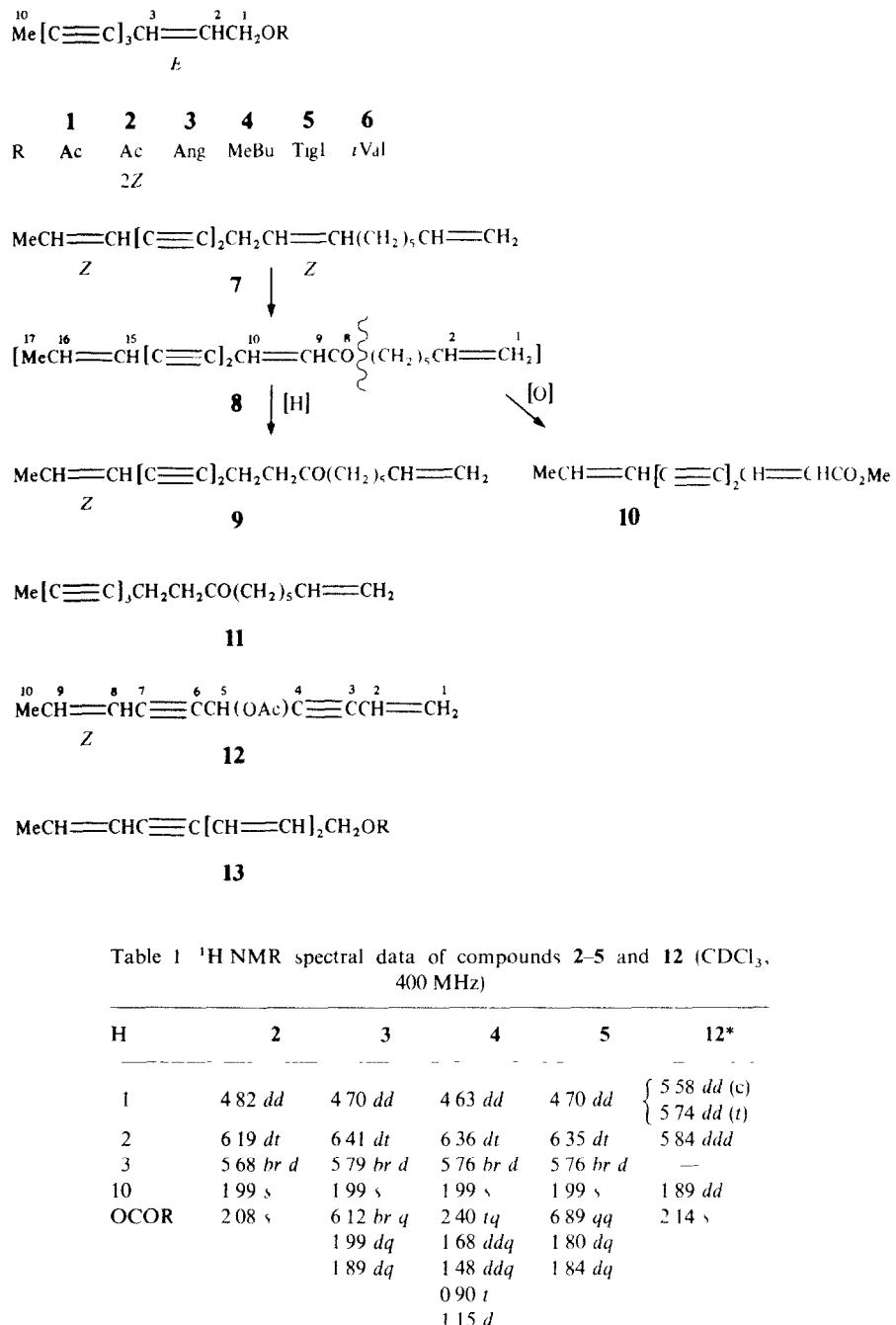


Table 1 ^1H NMR spectral data of compounds **2–5** and **12** (CDCl_3 , 400 MHz)

H	2	3	4	5	12*
1	4 82 <i>dd</i>	4 70 <i>dd</i>	4 63 <i>dd</i>	4 70 <i>dd</i>	$\left\{ \begin{array}{l} 5\ 58\ dd\ (c) \\ 5\ 74\ dd\ (t) \end{array} \right.$
2	6 19 <i>dt</i>	6 41 <i>dt</i>	6 36 <i>dt</i>	6 35 <i>dt</i>	5 84 <i>ddd</i>
3	5 68 <i>br d</i>	5 79 <i>br d</i>	5 76 <i>br d</i>	5 76 <i>br d</i>	—
10	1 99 <i>s</i>	1 99 <i>s</i>	1 99 <i>s</i>	1 99 <i>s</i>	1 89 <i>dd</i>
OCOR	2 08 <i>s</i>	6 12 <i>br q</i>	2 40 <i>tq</i>	6 89 <i>qq</i>	2 14 <i>s</i>
		1 99 <i>dq</i>	1 68 <i>ddq</i>	1 80 <i>dq</i>	
		1 89 <i>dq</i>	1 48 <i>ddq</i>	1 84 <i>dq</i>	
			0 90 <i>t</i>		
			1 15 <i>d</i>		

*H-5 6.23 *br t*, H-8 5.51 *ddq*, H-9 6.09 *dq*,
J [Hz] Compound **2** 1,2 = 7, 1,3 = 15, 2,3 = 11, compounds **3-5** 1,2 = 6,
 1,3 = 15, 2,3 = 16, compound **12** 1_c, 2 = 10.5, 1_t, 2 = 17.5, 2,5 = 5.8 = 15, 8.9
 = 10.5, 8,10 = 15, OAng 3,4 = 7, 3,5 = 4.5 = 15, OMebu 2,3 = 2.5 = 3.4 = 7,
 3,3' = 14, OTigl 3,4 = 7, 3,5 = 4.5 = 1

Esters of matricarianol seem to be characteristic for the tribe Astereae [8]. However, dehydromatricarianol esters are less common and so far they have not been reported from Astereae.

Also C_{17} -acetylenes are reported from several rep-

representatives of the Astereae [8]. However, they are restricted to a few genera. The most related genera *Minuria*, *Maria* and *Amellus* do not contain similar acetylenes. Therefore esters of dehydromatricarianol may be useful chemotaxonomic markers for *Calotis*.

Table 2 ^1H NMR spectral data of compounds **9** and **11** (400 MHz, CDCl_3)

H	9	11
1c	4.93 ddt	4.94 ddt
1t	4.98 ddt	4.99 ddt
2	5.78 ddt	5.78 ddt
3	2.03 br dt	2.04 br dt
4	1.38 tt	1.38 tt
5	1.28 tt	1.28 tt
6	1.58 tt	1.58 tt
7	2.41 t	2.40 t
9	2.67 br t	2.65 br t
10	2.57 br t	2.54 br t
15	5.48 ddq	—
16	6.11 dq	—
17	1.89 dd	1.94 s

J [Hz] 1c, 2=11, 1t,2=17.5, 1c,1t=1c,3=1t,3=15, 2,3=3,4=4.5=5.6=6.7=9.10=7, 10,15=15,17=15, 15,16=11

EXPERIMENTAL

The air-dried plant material was extracted with Et_2O -MeOH-petrol (1:1:1) and the extracts obtained were treated as reported previously [9]. The extract of the 320 g aerial parts of *C. dentex* (voucher Robinson 86/0225, collected in SE Australia) afforded by CC and TLC (Et_2O -petrol, 1:9) 20 mg *Z,Z*-matricariaol acetate, 25 mg **2** and 3 mg **1**. The extract of 400 g aerial parts of *C. erinacea* (voucher RMK 9607, collected in SE Australia) gave by CC two crude fractions (1 petrol and 2 Et_2O -petrol, 1:3). TLC (Et_2O -petrol, 1:9) of fraction 1 gave 2 mg Centaur X₃ and 2 mg Centaur X₄. TLC of fraction 2 (Et_2O -petrol, 1:9) gave 10 mg *Z,Z*- and 10 mg *Z-E*-matricariaester, 2 mg **1**, 4 mg *Z*-dehydromatricariaester and a mixture which gave by repeated TLC (Et_2O -petrol, 1:9) 2 mg *Z,E*-matricariaester, 1 mg **1** and a mixture which gave by HPLC (MeOH-H₂O, 9:1, always RP 18, *ca* 100 bar) 1 mg *E*-dehydromatricariaester (*R_f*, 4.1 min), 5 mg **4** (*R_f*, 5.7 min), 3 mg **6** (*R_f*, 5.9 min) and 0.5 mg **5** (*R_f*, 6.0 min). The extract of 90 g roots gave by CC a fraction with Et_2O -petrol (1:3) which afforded by TLC (Et_2O -petrol, 1:9) 7 mg **9** (*R_f*, 0.60), 5 mg *E*-dehydromatricariaester and a mixture which gave by HPLC (MeOH-H₂O, 9:1) 5 mg *Z,Z*-matricariaester and a mixture TLC of the latter (Et_2O -petrol, 1:9) afforded 1 mg **9** (*R_f*, 0.65) and 3 mg **11** (*R_f*, 0.58).

The extract of 80 g aerial parts of *C. multicaulis* (voucher RMK 9550, collected in W Australia) gave by CC two fractions of interest (1 petrol and 2 Et_2O -petrol, 1:9) TLC (petrol) of fraction 1 afforded 2 mg Centaur X₃. TLC of fraction 2 (Et_2O -petrol, 1:9) gave 1 mg **3** and 1 mg **12** (*R_f*, 0.30).

Z-Dehydromatricariaol acetate (**2**) Colourless oil, UV $\lambda_{\text{max}}^{\text{Et}_2\text{O}}$ nm 329, 317, 288, 271, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2215 (C≡C), 1745, 1240 (OAc), MS *m/z* (rel int) 186.068 [M]⁺ (64) (calc. for $\text{C}_{12}\text{H}_{10}\text{O}_2$ 186.068), 171 [M-Me]⁺ (17), 115 [C₉H₇]⁺ (100), 91 [C₇H₇]⁺ (53)

Dehydromatricariaol angelate (**3**) Colourless oil, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2215 (C≡C), 1720, 1650 (C=CCO₂R), MS *m/z* (rel int) 226.099 [M]⁺ (11) (calc. for $\text{C}_{15}\text{H}_{14}\text{O}_2$ 226.099), 211 [M-Me]⁺ (6), 127 [M-OCOR]⁺ (31), 115 [C₉H₇]⁺ (12), 83 [RCO]⁺ (100), 55 [83-CO]⁺ (81)

Dehydromatricariaol-[2-methylbutyrate] (**4**) Colourless oil, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2220 (C≡C), 1740 (CO₂R), 950 (trans CH=CH), UV $\lambda_{\text{max}}^{\text{Et}_2\text{O}}$ nm 328, 317, 288, 270, MS *m/z* (rel int) 228.115 [M]⁺ (24) (calc. for $\text{C}_{15}\text{H}_{16}\text{O}_2$ 228.115), 171 [M-C₄H₉]⁺ (42), 143 [171-CO]⁺ (20), 127 [M-OCOR]⁺ (34), 85 [RCO]⁺ (32), 57 [85-CO]⁺ (100)

Dehydromatricariaol tiglate (**5**) Colourless oil, still containing 4, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2215 (C≡C), 1720 (C=CCO₂R), MS *m/z* (rel int) 226.099 [M]⁺ (10) (calc. for $\text{C}_{15}\text{H}_{14}\text{O}_2$ 226.099), 127 [M-OCOR]⁺ (35), 83 [RCO]⁺ (100)

Calotinone (**9**) Colourless oil; UV $\lambda_{\text{max}}^{\text{Et}_2\text{O}}$ nm 281, 264, 251, 240, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2220 (C≡C), 1720 (C=O), 3080, 1640, 1000, 920 (CH=CH₂), 3030, 1610 (C=C), MS *m/z* (rel int) 242.167 [M]⁺ (3) (calc. for $\text{C}_{11}\text{H}_{22}\text{O}$ 242.169), 227 [M-Me]⁺ (2), 159 [M-C₆H₁₁]⁺ (46), 103 [C₈H₇]⁺ (22), 69 [C₅H₉]⁺ (52), 55 [C₄H₇]⁺ (100)

15,16-Dehydrocalotinone (**11**). Colourless oil, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2220 (C≡C), 1720 (C=O), 1640, 920 (CH=CH₂), MS *m/z* (rel int) 240.151 [M]⁺ (3) (calc. for $\text{C}_{17}\text{H}_{20}\text{O}$ 240.151), 225 [M-Me]⁺ (2), 197 [M-C₃H₇]⁺ (4), 157 [M-C₆H₁₁]⁺ (38), 143 [M-C₇H₁₃]⁺ (14), 115 [C₉H₇]⁺ (20), 55 [C₄H₇]⁺ (100)

5-Acetoxy-deca-1,8Z-diene-3,6-diyne (**12**) Colourless oil, IR $\nu_{\text{max}}^{\text{CCl}_4}$ cm⁻¹ 2220 (C≡C), 1750 (OAc), MS *m/z* (rel int) 188.084 [M]⁺ (26) (calc. for $\text{C}_{12}\text{H}_{12}\text{O}_2$ 188.084), 173 [M-Me]⁺ (48), 146 [M-ketene]⁺ (46), 145 [M-Ac]⁺ (40), 129 [M-OAc]⁺ (84), 128 [M-HOAc]⁺ (100), 117 [C₉H₉]⁺ (80), 115 [C₉H₇]⁺ (94), 91 [C₇H₇]⁺ (65)

REFERENCES

- 1 Grau, J (1977) in *The Biology and Chemistry of the Compositae* (Heywood, V H, Harborne, J B and Turner, B L eds), p. 539 Academic Press, London
- 2 Bohlmann, F and Zdero, C (1969) *Chem Ber* **102**, 1679.
- 3 Bohlmann, F and Zdero, C (1972) *Chem Ber* **105**, 1919
- 4 Lofgren, N (1949) *Acta Chem Scand* **3**, 82
- 5 Bohlmann, F, Fritz, U and Dutta, L (1980) *Phytochemistry* **19**, 841.
- 6 Bohlmann, F, Karl, W and Zeisberg, R (1970) *Chem Ber* **103**, 2860
- 7 Sorensen, N A (1961) *Proc Chem Soc (London)* 98
- 8 Bohlmann, F, Burkhardt, T and Zdero, C (1973) *Naturally Occurring Acetylenes*, p. 344 Academic Press, London.
- 9 Bohlmann, F, Zdero, C, King, R M and Robinson, H (1984) *Phytochemistry* **23**, 1979